Metamath Proof Explorer


Theorem dffrege115

Description: If from the circumstance that c is a result of an application of the procedure R to b , whatever b may be, it can be inferred that every result of an application of the procedure R to b is the same as c , then we say : "The procedure R is single-valued". Definition 115 of Frege1879 p. 77. (Contributed by RP, 7-Jul-2020)

Ref Expression
Assertion dffrege115 cbbRcabRaa=cFunR-1-1

Proof

Step Hyp Ref Expression
1 alcom cbbRcabRaa=cbcbRcabRaa=c
2 19.21v abRcbRaa=cbRcabRaa=c
3 impexp bRcbRaa=cbRcbRaa=c
4 vex bV
5 vex cV
6 4 5 brcnv bR-1-1ccR-1b
7 df-br bR-1-1cbcR-1-1
8 5 4 brcnv cR-1bbRc
9 6 7 8 3bitr3ri bRcbcR-1-1
10 vex aV
11 4 10 brcnv bR-1-1aaR-1b
12 df-br bR-1-1abaR-1-1
13 10 4 brcnv aR-1bbRa
14 11 12 13 3bitr3ri bRabaR-1-1
15 9 14 anbi12ci bRcbRabaR-1-1bcR-1-1
16 15 imbi1i bRcbRaa=cbaR-1-1bcR-1-1a=c
17 3 16 bitr3i bRcbRaa=cbaR-1-1bcR-1-1a=c
18 17 albii abRcbRaa=cabaR-1-1bcR-1-1a=c
19 2 18 bitr3i bRcabRaa=cabaR-1-1bcR-1-1a=c
20 19 albii cbRcabRaa=ccabaR-1-1bcR-1-1a=c
21 alcom cabaR-1-1bcR-1-1a=cacbaR-1-1bcR-1-1a=c
22 20 21 bitri cbRcabRaa=cacbaR-1-1bcR-1-1a=c
23 opeq2 a=cba=bc
24 23 eleq1d a=cbaR-1-1bcR-1-1
25 24 mo4 *abaR-1-1acbaR-1-1bcR-1-1a=c
26 df-mo *abaR-1-1cabaR-1-1a=c
27 22 25 26 3bitr2i cbRcabRaa=ccabaR-1-1a=c
28 27 albii bcbRcabRaa=cbcabaR-1-1a=c
29 relcnv RelR-1-1
30 29 biantrur bcabaR-1-1a=cRelR-1-1bcabaR-1-1a=c
31 dffun5 FunR-1-1RelR-1-1bcabaR-1-1a=c
32 30 31 bitr4i bcabaR-1-1a=cFunR-1-1
33 1 28 32 3bitri cbbRcabRaa=cFunR-1-1