Metamath Proof Explorer


Theorem frege116

Description: One direction of dffrege115 . Proposition 116 of Frege1879 p. 77. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege116.x XU
Assertion frege116 FunR-1-1bbRXabRaa=X

Proof

Step Hyp Ref Expression
1 frege116.x XU
2 dffrege115 cbbRcabRaa=cFunR-1-1
3 1 frege68c cbbRcabRaa=cFunR-1-1FunR-1-1[˙X/c]˙bbRcabRaa=c
4 sbcal [˙X/c]˙bbRcabRaa=cb[˙X/c]˙bRcabRaa=c
5 sbcimg XU[˙X/c]˙bRcabRaa=c[˙X/c]˙bRc[˙X/c]˙abRaa=c
6 1 5 ax-mp [˙X/c]˙bRcabRaa=c[˙X/c]˙bRc[˙X/c]˙abRaa=c
7 sbcbr2g XU[˙X/c]˙bRcbRX/cc
8 1 7 ax-mp [˙X/c]˙bRcbRX/cc
9 csbvarg XUX/cc=X
10 1 9 ax-mp X/cc=X
11 10 breq2i bRX/ccbRX
12 8 11 bitri [˙X/c]˙bRcbRX
13 sbcal [˙X/c]˙abRaa=ca[˙X/c]˙bRaa=c
14 sbcimg XU[˙X/c]˙bRaa=c[˙X/c]˙bRa[˙X/c]˙a=c
15 1 14 ax-mp [˙X/c]˙bRaa=c[˙X/c]˙bRa[˙X/c]˙a=c
16 sbcg XU[˙X/c]˙bRabRa
17 1 16 ax-mp [˙X/c]˙bRabRa
18 sbceq2g XU[˙X/c]˙a=ca=X/cc
19 1 18 ax-mp [˙X/c]˙a=ca=X/cc
20 10 eqeq2i a=X/cca=X
21 19 20 bitri [˙X/c]˙a=ca=X
22 17 21 imbi12i [˙X/c]˙bRa[˙X/c]˙a=cbRaa=X
23 15 22 bitri [˙X/c]˙bRaa=cbRaa=X
24 23 albii a[˙X/c]˙bRaa=cabRaa=X
25 13 24 bitri [˙X/c]˙abRaa=cabRaa=X
26 12 25 imbi12i [˙X/c]˙bRc[˙X/c]˙abRaa=cbRXabRaa=X
27 6 26 bitri [˙X/c]˙bRcabRaa=cbRXabRaa=X
28 27 albii b[˙X/c]˙bRcabRaa=cbbRXabRaa=X
29 4 28 bitri [˙X/c]˙bbRcabRaa=cbbRXabRaa=X
30 3 29 imbitrdi cbbRcabRaa=cFunR-1-1FunR-1-1bbRXabRaa=X
31 2 30 ax-mp FunR-1-1bbRXabRaa=X