| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege116.x |
|- X e. U |
| 2 |
|
dffrege115 |
|- ( A. c A. b ( b R c -> A. a ( b R a -> a = c ) ) <-> Fun `' `' R ) |
| 3 |
1
|
frege68c |
|- ( ( A. c A. b ( b R c -> A. a ( b R a -> a = c ) ) <-> Fun `' `' R ) -> ( Fun `' `' R -> [. X / c ]. A. b ( b R c -> A. a ( b R a -> a = c ) ) ) ) |
| 4 |
|
sbcal |
|- ( [. X / c ]. A. b ( b R c -> A. a ( b R a -> a = c ) ) <-> A. b [. X / c ]. ( b R c -> A. a ( b R a -> a = c ) ) ) |
| 5 |
|
sbcimg |
|- ( X e. U -> ( [. X / c ]. ( b R c -> A. a ( b R a -> a = c ) ) <-> ( [. X / c ]. b R c -> [. X / c ]. A. a ( b R a -> a = c ) ) ) ) |
| 6 |
1 5
|
ax-mp |
|- ( [. X / c ]. ( b R c -> A. a ( b R a -> a = c ) ) <-> ( [. X / c ]. b R c -> [. X / c ]. A. a ( b R a -> a = c ) ) ) |
| 7 |
|
sbcbr2g |
|- ( X e. U -> ( [. X / c ]. b R c <-> b R [_ X / c ]_ c ) ) |
| 8 |
1 7
|
ax-mp |
|- ( [. X / c ]. b R c <-> b R [_ X / c ]_ c ) |
| 9 |
|
csbvarg |
|- ( X e. U -> [_ X / c ]_ c = X ) |
| 10 |
1 9
|
ax-mp |
|- [_ X / c ]_ c = X |
| 11 |
10
|
breq2i |
|- ( b R [_ X / c ]_ c <-> b R X ) |
| 12 |
8 11
|
bitri |
|- ( [. X / c ]. b R c <-> b R X ) |
| 13 |
|
sbcal |
|- ( [. X / c ]. A. a ( b R a -> a = c ) <-> A. a [. X / c ]. ( b R a -> a = c ) ) |
| 14 |
|
sbcimg |
|- ( X e. U -> ( [. X / c ]. ( b R a -> a = c ) <-> ( [. X / c ]. b R a -> [. X / c ]. a = c ) ) ) |
| 15 |
1 14
|
ax-mp |
|- ( [. X / c ]. ( b R a -> a = c ) <-> ( [. X / c ]. b R a -> [. X / c ]. a = c ) ) |
| 16 |
|
sbcg |
|- ( X e. U -> ( [. X / c ]. b R a <-> b R a ) ) |
| 17 |
1 16
|
ax-mp |
|- ( [. X / c ]. b R a <-> b R a ) |
| 18 |
|
sbceq2g |
|- ( X e. U -> ( [. X / c ]. a = c <-> a = [_ X / c ]_ c ) ) |
| 19 |
1 18
|
ax-mp |
|- ( [. X / c ]. a = c <-> a = [_ X / c ]_ c ) |
| 20 |
10
|
eqeq2i |
|- ( a = [_ X / c ]_ c <-> a = X ) |
| 21 |
19 20
|
bitri |
|- ( [. X / c ]. a = c <-> a = X ) |
| 22 |
17 21
|
imbi12i |
|- ( ( [. X / c ]. b R a -> [. X / c ]. a = c ) <-> ( b R a -> a = X ) ) |
| 23 |
15 22
|
bitri |
|- ( [. X / c ]. ( b R a -> a = c ) <-> ( b R a -> a = X ) ) |
| 24 |
23
|
albii |
|- ( A. a [. X / c ]. ( b R a -> a = c ) <-> A. a ( b R a -> a = X ) ) |
| 25 |
13 24
|
bitri |
|- ( [. X / c ]. A. a ( b R a -> a = c ) <-> A. a ( b R a -> a = X ) ) |
| 26 |
12 25
|
imbi12i |
|- ( ( [. X / c ]. b R c -> [. X / c ]. A. a ( b R a -> a = c ) ) <-> ( b R X -> A. a ( b R a -> a = X ) ) ) |
| 27 |
6 26
|
bitri |
|- ( [. X / c ]. ( b R c -> A. a ( b R a -> a = c ) ) <-> ( b R X -> A. a ( b R a -> a = X ) ) ) |
| 28 |
27
|
albii |
|- ( A. b [. X / c ]. ( b R c -> A. a ( b R a -> a = c ) ) <-> A. b ( b R X -> A. a ( b R a -> a = X ) ) ) |
| 29 |
4 28
|
bitri |
|- ( [. X / c ]. A. b ( b R c -> A. a ( b R a -> a = c ) ) <-> A. b ( b R X -> A. a ( b R a -> a = X ) ) ) |
| 30 |
3 29
|
imbitrdi |
|- ( ( A. c A. b ( b R c -> A. a ( b R a -> a = c ) ) <-> Fun `' `' R ) -> ( Fun `' `' R -> A. b ( b R X -> A. a ( b R a -> a = X ) ) ) ) |
| 31 |
2 30
|
ax-mp |
|- ( Fun `' `' R -> A. b ( b R X -> A. a ( b R a -> a = X ) ) ) |