Metamath Proof Explorer


Theorem sbcbr2g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr2g AV[˙A/x]˙BRCBRA/xC

Proof

Step Hyp Ref Expression
1 sbcbr12g AV[˙A/x]˙BRCA/xBRA/xC
2 csbconstg AVA/xB=B
3 2 breq1d AVA/xBRA/xCBRA/xC
4 1 3 bitrd AV[˙A/x]˙BRCBRA/xC