| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege116.x |
|- X e. U |
| 2 |
|
frege118.y |
|- Y e. V |
| 3 |
2
|
frege58c |
|- ( A. b ( b R X -> A. a ( b R a -> a = X ) ) -> [. Y / b ]. ( b R X -> A. a ( b R a -> a = X ) ) ) |
| 4 |
|
sbcimg |
|- ( Y e. V -> ( [. Y / b ]. ( b R X -> A. a ( b R a -> a = X ) ) <-> ( [. Y / b ]. b R X -> [. Y / b ]. A. a ( b R a -> a = X ) ) ) ) |
| 5 |
2 4
|
ax-mp |
|- ( [. Y / b ]. ( b R X -> A. a ( b R a -> a = X ) ) <-> ( [. Y / b ]. b R X -> [. Y / b ]. A. a ( b R a -> a = X ) ) ) |
| 6 |
|
sbcbr1g |
|- ( Y e. V -> ( [. Y / b ]. b R X <-> [_ Y / b ]_ b R X ) ) |
| 7 |
2 6
|
ax-mp |
|- ( [. Y / b ]. b R X <-> [_ Y / b ]_ b R X ) |
| 8 |
|
csbvarg |
|- ( Y e. V -> [_ Y / b ]_ b = Y ) |
| 9 |
2 8
|
ax-mp |
|- [_ Y / b ]_ b = Y |
| 10 |
9
|
breq1i |
|- ( [_ Y / b ]_ b R X <-> Y R X ) |
| 11 |
7 10
|
bitri |
|- ( [. Y / b ]. b R X <-> Y R X ) |
| 12 |
|
sbcal |
|- ( [. Y / b ]. A. a ( b R a -> a = X ) <-> A. a [. Y / b ]. ( b R a -> a = X ) ) |
| 13 |
|
sbcimg |
|- ( Y e. V -> ( [. Y / b ]. ( b R a -> a = X ) <-> ( [. Y / b ]. b R a -> [. Y / b ]. a = X ) ) ) |
| 14 |
2 13
|
ax-mp |
|- ( [. Y / b ]. ( b R a -> a = X ) <-> ( [. Y / b ]. b R a -> [. Y / b ]. a = X ) ) |
| 15 |
|
sbcbr1g |
|- ( Y e. V -> ( [. Y / b ]. b R a <-> [_ Y / b ]_ b R a ) ) |
| 16 |
2 15
|
ax-mp |
|- ( [. Y / b ]. b R a <-> [_ Y / b ]_ b R a ) |
| 17 |
9
|
breq1i |
|- ( [_ Y / b ]_ b R a <-> Y R a ) |
| 18 |
16 17
|
bitri |
|- ( [. Y / b ]. b R a <-> Y R a ) |
| 19 |
|
sbcg |
|- ( Y e. V -> ( [. Y / b ]. a = X <-> a = X ) ) |
| 20 |
2 19
|
ax-mp |
|- ( [. Y / b ]. a = X <-> a = X ) |
| 21 |
18 20
|
imbi12i |
|- ( ( [. Y / b ]. b R a -> [. Y / b ]. a = X ) <-> ( Y R a -> a = X ) ) |
| 22 |
14 21
|
bitri |
|- ( [. Y / b ]. ( b R a -> a = X ) <-> ( Y R a -> a = X ) ) |
| 23 |
22
|
albii |
|- ( A. a [. Y / b ]. ( b R a -> a = X ) <-> A. a ( Y R a -> a = X ) ) |
| 24 |
12 23
|
bitri |
|- ( [. Y / b ]. A. a ( b R a -> a = X ) <-> A. a ( Y R a -> a = X ) ) |
| 25 |
11 24
|
imbi12i |
|- ( ( [. Y / b ]. b R X -> [. Y / b ]. A. a ( b R a -> a = X ) ) <-> ( Y R X -> A. a ( Y R a -> a = X ) ) ) |
| 26 |
5 25
|
bitri |
|- ( [. Y / b ]. ( b R X -> A. a ( b R a -> a = X ) ) <-> ( Y R X -> A. a ( Y R a -> a = X ) ) ) |
| 27 |
3 26
|
sylib |
|- ( A. b ( b R X -> A. a ( b R a -> a = X ) ) -> ( Y R X -> A. a ( Y R a -> a = X ) ) ) |
| 28 |
1
|
frege117 |
|- ( ( A. b ( b R X -> A. a ( b R a -> a = X ) ) -> ( Y R X -> A. a ( Y R a -> a = X ) ) ) -> ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> a = X ) ) ) ) |
| 29 |
27 28
|
ax-mp |
|- ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> a = X ) ) ) |