Metamath Proof Explorer


Theorem frege118

Description: Simplified application of one direction of dffrege115 . Proposition 118 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
Assertion frege118 ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 frege116.x 𝑋𝑈
2 frege118.y 𝑌𝑉
3 2 frege58c ( ∀ 𝑏 ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) → [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) )
4 sbcimg ( 𝑌𝑉 → ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋[ 𝑌 / 𝑏 ]𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) ) )
5 2 4 ax-mp ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋[ 𝑌 / 𝑏 ]𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) )
6 sbcbr1g ( 𝑌𝑉 → ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 𝑌 / 𝑏 𝑏 𝑅 𝑋 ) )
7 2 6 ax-mp ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 𝑌 / 𝑏 𝑏 𝑅 𝑋 )
8 csbvarg ( 𝑌𝑉 𝑌 / 𝑏 𝑏 = 𝑌 )
9 2 8 ax-mp 𝑌 / 𝑏 𝑏 = 𝑌
10 9 breq1i ( 𝑌 / 𝑏 𝑏 𝑅 𝑋𝑌 𝑅 𝑋 )
11 7 10 bitri ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋𝑌 𝑅 𝑋 )
12 sbcal ( [ 𝑌 / 𝑏 ]𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ↔ ∀ 𝑎 [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) )
13 sbcimg ( 𝑌𝑉 → ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎[ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ) ) )
14 2 13 ax-mp ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎[ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ) )
15 sbcbr1g ( 𝑌𝑉 → ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 𝑌 / 𝑏 𝑏 𝑅 𝑎 ) )
16 2 15 ax-mp ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 𝑌 / 𝑏 𝑏 𝑅 𝑎 )
17 9 breq1i ( 𝑌 / 𝑏 𝑏 𝑅 𝑎𝑌 𝑅 𝑎 )
18 16 17 bitri ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎𝑌 𝑅 𝑎 )
19 sbcg ( 𝑌𝑉 → ( [ 𝑌 / 𝑏 ] 𝑎 = 𝑋𝑎 = 𝑋 ) )
20 2 19 ax-mp ( [ 𝑌 / 𝑏 ] 𝑎 = 𝑋𝑎 = 𝑋 )
21 18 20 imbi12i ( ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎[ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ) ↔ ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) )
22 14 21 bitri ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ↔ ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) )
23 22 albii ( ∀ 𝑎 [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) )
24 12 23 bitri ( [ 𝑌 / 𝑏 ]𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) )
25 11 24 imbi12i ( ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋[ 𝑌 / 𝑏 ]𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) ↔ ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) )
26 5 25 bitri ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) ↔ ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) )
27 3 26 sylib ( ∀ 𝑏 ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) )
28 1 frege117 ( ( ∀ 𝑏 ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 = 𝑋 ) ) → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) ) → ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) ) )
29 27 28 ax-mp ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) ) )