Step |
Hyp |
Ref |
Expression |
1 |
|
frege116.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege118.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
2
|
frege58c |
⊢ ( ∀ 𝑏 ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) → [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) |
4 |
|
sbcimg |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 → [ 𝑌 / 𝑏 ] ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) ) |
5 |
2 4
|
ax-mp |
⊢ ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 → [ 𝑌 / 𝑏 ] ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) |
6 |
|
sbcbr1g |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 ↔ ⦋ 𝑌 / 𝑏 ⦌ 𝑏 𝑅 𝑋 ) ) |
7 |
2 6
|
ax-mp |
⊢ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 ↔ ⦋ 𝑌 / 𝑏 ⦌ 𝑏 𝑅 𝑋 ) |
8 |
|
csbvarg |
⊢ ( 𝑌 ∈ 𝑉 → ⦋ 𝑌 / 𝑏 ⦌ 𝑏 = 𝑌 ) |
9 |
2 8
|
ax-mp |
⊢ ⦋ 𝑌 / 𝑏 ⦌ 𝑏 = 𝑌 |
10 |
9
|
breq1i |
⊢ ( ⦋ 𝑌 / 𝑏 ⦌ 𝑏 𝑅 𝑋 ↔ 𝑌 𝑅 𝑋 ) |
11 |
7 10
|
bitri |
⊢ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 ↔ 𝑌 𝑅 𝑋 ) |
12 |
|
sbcal |
⊢ ( [ 𝑌 / 𝑏 ] ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ↔ ∀ 𝑎 [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) |
13 |
|
sbcimg |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 → [ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ) ) ) |
14 |
2 13
|
ax-mp |
⊢ ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ↔ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 → [ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ) ) |
15 |
|
sbcbr1g |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 ↔ ⦋ 𝑌 / 𝑏 ⦌ 𝑏 𝑅 𝑎 ) ) |
16 |
2 15
|
ax-mp |
⊢ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 ↔ ⦋ 𝑌 / 𝑏 ⦌ 𝑏 𝑅 𝑎 ) |
17 |
9
|
breq1i |
⊢ ( ⦋ 𝑌 / 𝑏 ⦌ 𝑏 𝑅 𝑎 ↔ 𝑌 𝑅 𝑎 ) |
18 |
16 17
|
bitri |
⊢ ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 ↔ 𝑌 𝑅 𝑎 ) |
19 |
|
sbcg |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ↔ 𝑎 = 𝑋 ) ) |
20 |
2 19
|
ax-mp |
⊢ ( [ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ↔ 𝑎 = 𝑋 ) |
21 |
18 20
|
imbi12i |
⊢ ( ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑎 → [ 𝑌 / 𝑏 ] 𝑎 = 𝑋 ) ↔ ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) |
22 |
14 21
|
bitri |
⊢ ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ↔ ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) |
23 |
22
|
albii |
⊢ ( ∀ 𝑎 [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) |
24 |
12 23
|
bitri |
⊢ ( [ 𝑌 / 𝑏 ] ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) |
25 |
11 24
|
imbi12i |
⊢ ( ( [ 𝑌 / 𝑏 ] 𝑏 𝑅 𝑋 → [ 𝑌 / 𝑏 ] ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ↔ ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) |
26 |
5 25
|
bitri |
⊢ ( [ 𝑌 / 𝑏 ] ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ↔ ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) |
27 |
3 26
|
sylib |
⊢ ( ∀ 𝑏 ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) |
28 |
1
|
frege117 |
⊢ ( ( ∀ 𝑏 ( 𝑏 𝑅 𝑋 → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 = 𝑋 ) ) → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) → ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) ) |
29 |
27 28
|
ax-mp |
⊢ ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) ) |