Metamath Proof Explorer


Theorem frege119

Description: Lemma for frege120 . Proposition 119 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x
|- X e. U
frege118.y
|- Y e. V
Assertion frege119
|- ( ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) )

Proof

Step Hyp Ref Expression
1 frege116.x
 |-  X e. U
2 frege118.y
 |-  Y e. V
3 1 2 frege118
 |-  ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> a = X ) ) )
4 frege19
 |-  ( ( Fun `' `' R -> ( Y R X -> A. a ( Y R a -> a = X ) ) ) -> ( ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) ) )
5 3 4 ax-mp
 |-  ( ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) )