Metamath Proof Explorer


Theorem frege120

Description: Simplified application of one direction of dffrege115 . Proposition 120 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x
|- X e. U
frege118.y
|- Y e. V
frege120.a
|- A e. W
Assertion frege120
|- ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) )

Proof

Step Hyp Ref Expression
1 frege116.x
 |-  X e. U
2 frege118.y
 |-  Y e. V
3 frege120.a
 |-  A e. W
4 3 frege58c
 |-  ( A. a ( Y R a -> a = X ) -> [. A / a ]. ( Y R a -> a = X ) )
5 sbcim1
 |-  ( [. A / a ]. ( Y R a -> a = X ) -> ( [. A / a ]. Y R a -> [. A / a ]. a = X ) )
6 sbcbr2g
 |-  ( A e. W -> ( [. A / a ]. Y R a <-> Y R [_ A / a ]_ a ) )
7 3 6 ax-mp
 |-  ( [. A / a ]. Y R a <-> Y R [_ A / a ]_ a )
8 csbvarg
 |-  ( A e. W -> [_ A / a ]_ a = A )
9 3 8 ax-mp
 |-  [_ A / a ]_ a = A
10 9 breq2i
 |-  ( Y R [_ A / a ]_ a <-> Y R A )
11 7 10 bitri
 |-  ( [. A / a ]. Y R a <-> Y R A )
12 sbceq1g
 |-  ( A e. W -> ( [. A / a ]. a = X <-> [_ A / a ]_ a = X ) )
13 3 12 ax-mp
 |-  ( [. A / a ]. a = X <-> [_ A / a ]_ a = X )
14 9 eqeq1i
 |-  ( [_ A / a ]_ a = X <-> A = X )
15 13 14 bitri
 |-  ( [. A / a ]. a = X <-> A = X )
16 5 11 15 3imtr3g
 |-  ( [. A / a ]. ( Y R a -> a = X ) -> ( Y R A -> A = X ) )
17 4 16 syl
 |-  ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) )
18 1 2 frege119
 |-  ( ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) )
19 17 18 ax-mp
 |-  ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) )