Step |
Hyp |
Ref |
Expression |
1 |
|
frege116.x |
|- X e. U |
2 |
|
frege118.y |
|- Y e. V |
3 |
|
frege120.a |
|- A e. W |
4 |
3
|
frege58c |
|- ( A. a ( Y R a -> a = X ) -> [. A / a ]. ( Y R a -> a = X ) ) |
5 |
|
sbcim1 |
|- ( [. A / a ]. ( Y R a -> a = X ) -> ( [. A / a ]. Y R a -> [. A / a ]. a = X ) ) |
6 |
|
sbcbr2g |
|- ( A e. W -> ( [. A / a ]. Y R a <-> Y R [_ A / a ]_ a ) ) |
7 |
3 6
|
ax-mp |
|- ( [. A / a ]. Y R a <-> Y R [_ A / a ]_ a ) |
8 |
|
csbvarg |
|- ( A e. W -> [_ A / a ]_ a = A ) |
9 |
3 8
|
ax-mp |
|- [_ A / a ]_ a = A |
10 |
9
|
breq2i |
|- ( Y R [_ A / a ]_ a <-> Y R A ) |
11 |
7 10
|
bitri |
|- ( [. A / a ]. Y R a <-> Y R A ) |
12 |
|
sbceq1g |
|- ( A e. W -> ( [. A / a ]. a = X <-> [_ A / a ]_ a = X ) ) |
13 |
3 12
|
ax-mp |
|- ( [. A / a ]. a = X <-> [_ A / a ]_ a = X ) |
14 |
9
|
eqeq1i |
|- ( [_ A / a ]_ a = X <-> A = X ) |
15 |
13 14
|
bitri |
|- ( [. A / a ]. a = X <-> A = X ) |
16 |
5 11 15
|
3imtr3g |
|- ( [. A / a ]. ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) |
17 |
4 16
|
syl |
|- ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) |
18 |
1 2
|
frege119 |
|- ( ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) ) |
19 |
17 18
|
ax-mp |
|- ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) |