| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege116.x |
|- X e. U |
| 2 |
|
frege118.y |
|- Y e. V |
| 3 |
|
frege120.a |
|- A e. W |
| 4 |
3
|
frege58c |
|- ( A. a ( Y R a -> a = X ) -> [. A / a ]. ( Y R a -> a = X ) ) |
| 5 |
|
sbcim1 |
|- ( [. A / a ]. ( Y R a -> a = X ) -> ( [. A / a ]. Y R a -> [. A / a ]. a = X ) ) |
| 6 |
|
sbcbr2g |
|- ( A e. W -> ( [. A / a ]. Y R a <-> Y R [_ A / a ]_ a ) ) |
| 7 |
3 6
|
ax-mp |
|- ( [. A / a ]. Y R a <-> Y R [_ A / a ]_ a ) |
| 8 |
|
csbvarg |
|- ( A e. W -> [_ A / a ]_ a = A ) |
| 9 |
3 8
|
ax-mp |
|- [_ A / a ]_ a = A |
| 10 |
9
|
breq2i |
|- ( Y R [_ A / a ]_ a <-> Y R A ) |
| 11 |
7 10
|
bitri |
|- ( [. A / a ]. Y R a <-> Y R A ) |
| 12 |
|
sbceq1g |
|- ( A e. W -> ( [. A / a ]. a = X <-> [_ A / a ]_ a = X ) ) |
| 13 |
3 12
|
ax-mp |
|- ( [. A / a ]. a = X <-> [_ A / a ]_ a = X ) |
| 14 |
9
|
eqeq1i |
|- ( [_ A / a ]_ a = X <-> A = X ) |
| 15 |
13 14
|
bitri |
|- ( [. A / a ]. a = X <-> A = X ) |
| 16 |
5 11 15
|
3imtr3g |
|- ( [. A / a ]. ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) |
| 17 |
4 16
|
syl |
|- ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) |
| 18 |
1 2
|
frege119 |
|- ( ( A. a ( Y R a -> a = X ) -> ( Y R A -> A = X ) ) -> ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) ) |
| 19 |
17 18
|
ax-mp |
|- ( Fun `' `' R -> ( Y R X -> ( Y R A -> A = X ) ) ) |