Metamath Proof Explorer


Theorem frege120

Description: Simplified application of one direction of dffrege115 . Proposition 120 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x X U
frege118.y Y V
frege120.a A W
Assertion frege120 Fun R -1 -1 Y R X Y R A A = X

Proof

Step Hyp Ref Expression
1 frege116.x X U
2 frege118.y Y V
3 frege120.a A W
4 3 frege58c a Y R a a = X [˙A / a]˙ Y R a a = X
5 sbcim1 [˙A / a]˙ Y R a a = X [˙A / a]˙ Y R a [˙A / a]˙ a = X
6 sbcbr2g A W [˙A / a]˙ Y R a Y R A / a a
7 3 6 ax-mp [˙A / a]˙ Y R a Y R A / a a
8 csbvarg A W A / a a = A
9 3 8 ax-mp A / a a = A
10 9 breq2i Y R A / a a Y R A
11 7 10 bitri [˙A / a]˙ Y R a Y R A
12 sbceq1g A W [˙A / a]˙ a = X A / a a = X
13 3 12 ax-mp [˙A / a]˙ a = X A / a a = X
14 9 eqeq1i A / a a = X A = X
15 13 14 bitri [˙A / a]˙ a = X A = X
16 5 11 15 3imtr3g [˙A / a]˙ Y R a a = X Y R A A = X
17 4 16 syl a Y R a a = X Y R A A = X
18 1 2 frege119 a Y R a a = X Y R A A = X Fun R -1 -1 Y R X Y R A A = X
19 17 18 ax-mp Fun R -1 -1 Y R X Y R A A = X