Step |
Hyp |
Ref |
Expression |
1 |
|
frege116.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege118.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
|
frege120.a |
⊢ 𝐴 ∈ 𝑊 |
4 |
3
|
frege58c |
⊢ ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) → [ 𝐴 / 𝑎 ] ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) ) |
5 |
|
sbcim1 |
⊢ ( [ 𝐴 / 𝑎 ] ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) → ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎 → [ 𝐴 / 𝑎 ] 𝑎 = 𝑋 ) ) |
6 |
|
sbcbr2g |
⊢ ( 𝐴 ∈ 𝑊 → ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎 ↔ 𝑌 𝑅 ⦋ 𝐴 / 𝑎 ⦌ 𝑎 ) ) |
7 |
3 6
|
ax-mp |
⊢ ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎 ↔ 𝑌 𝑅 ⦋ 𝐴 / 𝑎 ⦌ 𝑎 ) |
8 |
|
csbvarg |
⊢ ( 𝐴 ∈ 𝑊 → ⦋ 𝐴 / 𝑎 ⦌ 𝑎 = 𝐴 ) |
9 |
3 8
|
ax-mp |
⊢ ⦋ 𝐴 / 𝑎 ⦌ 𝑎 = 𝐴 |
10 |
9
|
breq2i |
⊢ ( 𝑌 𝑅 ⦋ 𝐴 / 𝑎 ⦌ 𝑎 ↔ 𝑌 𝑅 𝐴 ) |
11 |
7 10
|
bitri |
⊢ ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎 ↔ 𝑌 𝑅 𝐴 ) |
12 |
|
sbceq1g |
⊢ ( 𝐴 ∈ 𝑊 → ( [ 𝐴 / 𝑎 ] 𝑎 = 𝑋 ↔ ⦋ 𝐴 / 𝑎 ⦌ 𝑎 = 𝑋 ) ) |
13 |
3 12
|
ax-mp |
⊢ ( [ 𝐴 / 𝑎 ] 𝑎 = 𝑋 ↔ ⦋ 𝐴 / 𝑎 ⦌ 𝑎 = 𝑋 ) |
14 |
9
|
eqeq1i |
⊢ ( ⦋ 𝐴 / 𝑎 ⦌ 𝑎 = 𝑋 ↔ 𝐴 = 𝑋 ) |
15 |
13 14
|
bitri |
⊢ ( [ 𝐴 / 𝑎 ] 𝑎 = 𝑋 ↔ 𝐴 = 𝑋 ) |
16 |
5 11 15
|
3imtr3g |
⊢ ( [ 𝐴 / 𝑎 ] ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) |
17 |
4 16
|
syl |
⊢ ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) |
18 |
1 2
|
frege119 |
⊢ ( ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 = 𝑋 ) → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) → ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) ) |