Metamath Proof Explorer


Theorem frege120

Description: Simplified application of one direction of dffrege115 . Proposition 120 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x 𝑋𝑈
frege118.y 𝑌𝑉
frege120.a 𝐴𝑊
Assertion frege120 ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴𝐴 = 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 frege116.x 𝑋𝑈
2 frege118.y 𝑌𝑉
3 frege120.a 𝐴𝑊
4 3 frege58c ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) → [ 𝐴 / 𝑎 ] ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) )
5 sbcim1 ( [ 𝐴 / 𝑎 ] ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) → ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎[ 𝐴 / 𝑎 ] 𝑎 = 𝑋 ) )
6 sbcbr2g ( 𝐴𝑊 → ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎𝑌 𝑅 𝐴 / 𝑎 𝑎 ) )
7 3 6 ax-mp ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎𝑌 𝑅 𝐴 / 𝑎 𝑎 )
8 csbvarg ( 𝐴𝑊 𝐴 / 𝑎 𝑎 = 𝐴 )
9 3 8 ax-mp 𝐴 / 𝑎 𝑎 = 𝐴
10 9 breq2i ( 𝑌 𝑅 𝐴 / 𝑎 𝑎𝑌 𝑅 𝐴 )
11 7 10 bitri ( [ 𝐴 / 𝑎 ] 𝑌 𝑅 𝑎𝑌 𝑅 𝐴 )
12 sbceq1g ( 𝐴𝑊 → ( [ 𝐴 / 𝑎 ] 𝑎 = 𝑋 𝐴 / 𝑎 𝑎 = 𝑋 ) )
13 3 12 ax-mp ( [ 𝐴 / 𝑎 ] 𝑎 = 𝑋 𝐴 / 𝑎 𝑎 = 𝑋 )
14 9 eqeq1i ( 𝐴 / 𝑎 𝑎 = 𝑋𝐴 = 𝑋 )
15 13 14 bitri ( [ 𝐴 / 𝑎 ] 𝑎 = 𝑋𝐴 = 𝑋 )
16 5 11 15 3imtr3g ( [ 𝐴 / 𝑎 ] ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) → ( 𝑌 𝑅 𝐴𝐴 = 𝑋 ) )
17 4 16 syl ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) → ( 𝑌 𝑅 𝐴𝐴 = 𝑋 ) )
18 1 2 frege119 ( ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 = 𝑋 ) → ( 𝑌 𝑅 𝐴𝐴 = 𝑋 ) ) → ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴𝐴 = 𝑋 ) ) ) )
19 17 18 ax-mp ( Fun 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴𝐴 = 𝑋 ) ) )