Description: Lemma for frege122 . Proposition 121 of Frege1879 p. 79. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege116.x | ⊢ 𝑋 ∈ 𝑈 | |
frege118.y | ⊢ 𝑌 ∈ 𝑉 | ||
frege120.a | ⊢ 𝐴 ∈ 𝑊 | ||
Assertion | frege121 | ⊢ ( ( 𝐴 = 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝐴 ) → ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝐴 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege116.x | ⊢ 𝑋 ∈ 𝑈 | |
2 | frege118.y | ⊢ 𝑌 ∈ 𝑉 | |
3 | frege120.a | ⊢ 𝐴 ∈ 𝑊 | |
4 | 1 2 3 | frege120 | ⊢ ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) ) |
5 | frege20 | ⊢ ( ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝐴 = 𝑋 ) ) ) → ( ( 𝐴 = 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝐴 ) → ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝐴 ) ) ) ) ) | |
6 | 4 5 | ax-mp | ⊢ ( ( 𝐴 = 𝑋 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝐴 ) → ( Fun ◡ ◡ 𝑅 → ( 𝑌 𝑅 𝑋 → ( 𝑌 𝑅 𝐴 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝐴 ) ) ) ) |