Metamath Proof Explorer


Theorem frege121

Description: Lemma for frege122 . Proposition 121 of Frege1879 p. 79. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x X U
frege118.y Y V
frege120.a A W
Assertion frege121 A = X X t+ R I A Fun R -1 -1 Y R X Y R A X t+ R I A

Proof

Step Hyp Ref Expression
1 frege116.x X U
2 frege118.y Y V
3 frege120.a A W
4 1 2 3 frege120 Fun R -1 -1 Y R X Y R A A = X
5 frege20 Fun R -1 -1 Y R X Y R A A = X A = X X t+ R I A Fun R -1 -1 Y R X Y R A X t+ R I A
6 4 5 ax-mp A = X X t+ R I A Fun R -1 -1 Y R X Y R A X t+ R I A