Metamath Proof Explorer


Theorem frege20

Description: A closed form of syl8 . Proposition 20 of Frege1879 p. 40. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege20 ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜃𝜏 ) → ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 frege19 ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜃𝜏 ) → ( 𝜓 → ( 𝜒𝜏 ) ) ) )
2 frege18 ( ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜃𝜏 ) → ( 𝜓 → ( 𝜒𝜏 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜃𝜏 ) → ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜃𝜏 ) → ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) ) ) )