Description: A closed form of syl8 . Proposition 20 of Frege1879 p. 40. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frege20 | |- ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( th -> ta ) -> ( ph -> ( ps -> ( ch -> ta ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege19 | |- ( ( ps -> ( ch -> th ) ) -> ( ( th -> ta ) -> ( ps -> ( ch -> ta ) ) ) ) |
|
| 2 | frege18 | |- ( ( ( ps -> ( ch -> th ) ) -> ( ( th -> ta ) -> ( ps -> ( ch -> ta ) ) ) ) -> ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( th -> ta ) -> ( ph -> ( ps -> ( ch -> ta ) ) ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( th -> ta ) -> ( ph -> ( ps -> ( ch -> ta ) ) ) ) ) |