Metamath Proof Explorer


Theorem frege119

Description: Lemma for frege120 . Proposition 119 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege116.x X U
frege118.y Y V
Assertion frege119 a Y R a a = X Y R A A = X Fun R -1 -1 Y R X Y R A A = X

Proof

Step Hyp Ref Expression
1 frege116.x X U
2 frege118.y Y V
3 1 2 frege118 Fun R -1 -1 Y R X a Y R a a = X
4 frege19 Fun R -1 -1 Y R X a Y R a a = X a Y R a a = X Y R A A = X Fun R -1 -1 Y R X Y R A A = X
5 3 4 ax-mp a Y R a a = X Y R A A = X Fun R -1 -1 Y R X Y R A A = X