Metamath Proof Explorer


Theorem frege117

Description: Lemma for frege118 . Proposition 117 of Frege1879 p. 78. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege116.x XU
Assertion frege117 bbRXabRaa=XYRXaYRaa=XFunR-1-1YRXaYRaa=X

Proof

Step Hyp Ref Expression
1 frege116.x XU
2 1 frege116 FunR-1-1bbRXabRaa=X
3 frege9 FunR-1-1bbRXabRaa=XbbRXabRaa=XYRXaYRaa=XFunR-1-1YRXaYRaa=X
4 2 3 ax-mp bbRXabRaa=XYRXaYRaa=XFunR-1-1YRXaYRaa=X