Metamath Proof Explorer


Theorem frege123

Description: Lemma for frege124 . Proposition 123 of Frege1879 p. 79. (Contributed by RP, 8-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x X U
frege123.y Y V
Assertion frege123 a Y R a X t+ R I a Y t+ R M X t+ R I M Fun R -1 -1 Y R X Y t+ R M X t+ R I M

Proof

Step Hyp Ref Expression
1 frege123.x X U
2 frege123.y Y V
3 vex a V
4 1 2 3 frege122 Fun R -1 -1 Y R X Y R a X t+ R I a
5 4 alrimdv Fun R -1 -1 Y R X a Y R a X t+ R I a
6 frege19 Fun R -1 -1 Y R X a Y R a X t+ R I a a Y R a X t+ R I a Y t+ R M X t+ R I M Fun R -1 -1 Y R X Y t+ R M X t+ R I M
7 5 6 ax-mp a Y R a X t+ R I a Y t+ R M X t+ R I M Fun R -1 -1 Y R X Y t+ R M X t+ R I M