Metamath Proof Explorer


Theorem frege128

Description: Lemma for frege129 . Proposition 128 of Frege1879 p. 83. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x XU
frege123.y YV
frege124.m MW
frege124.r RS
Assertion frege128 Mt+RIYYRX¬Xt+RMMt+RIXFunR-1-1¬Yt+RMMt+RIYYRX¬Xt+RMMt+RIX

Proof

Step Hyp Ref Expression
1 frege123.x XU
2 frege123.y YV
3 frege124.m MW
4 frege124.r RS
5 1 2 3 4 frege127 FunR-1-1Yt+RMYRX¬Xt+RMMt+RIX
6 frege51 FunR-1-1Yt+RMYRX¬Xt+RMMt+RIXMt+RIYYRX¬Xt+RMMt+RIXFunR-1-1¬Yt+RMMt+RIYYRX¬Xt+RMMt+RIX
7 5 6 ax-mp Mt+RIYYRX¬Xt+RMMt+RIXFunR-1-1¬Yt+RMMt+RIYYRX¬Xt+RMMt+RIX