Metamath Proof Explorer


Theorem frege128

Description: Lemma for frege129 . Proposition 128 of Frege1879 p. 83. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x X U
frege123.y Y V
frege124.m M W
frege124.r R S
Assertion frege128 M t+ R I Y Y R X ¬ X t+ R M M t+ R I X Fun R -1 -1 ¬ Y t+ R M M t+ R I Y Y R X ¬ X t+ R M M t+ R I X

Proof

Step Hyp Ref Expression
1 frege123.x X U
2 frege123.y Y V
3 frege124.m M W
4 frege124.r R S
5 1 2 3 4 frege127 Fun R -1 -1 Y t+ R M Y R X ¬ X t+ R M M t+ R I X
6 frege51 Fun R -1 -1 Y t+ R M Y R X ¬ X t+ R M M t+ R I X M t+ R I Y Y R X ¬ X t+ R M M t+ R I X Fun R -1 -1 ¬ Y t+ R M M t+ R I Y Y R X ¬ X t+ R M M t+ R I X
7 5 6 ax-mp M t+ R I Y Y R X ¬ X t+ R M M t+ R I X Fun R -1 -1 ¬ Y t+ R M M t+ R I Y Y R X ¬ X t+ R M M t+ R I X