Metamath Proof Explorer


Theorem frege66c

Description: Swap antecedents of frege65c . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a AB
Assertion frege66c xφψxχφ[˙A/x]˙χ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 frege59c.a AB
2 1 frege65c xχφxφψ[˙A/x]˙χ[˙A/x]˙ψ
3 ax-frege8 xχφxφψ[˙A/x]˙χ[˙A/x]˙ψxφψxχφ[˙A/x]˙χ[˙A/x]˙ψ
4 2 3 ax-mp xφψxχφ[˙A/x]˙χ[˙A/x]˙ψ