Metamath Proof Explorer


Theorem frege66c

Description: Swap antecedents of frege65c . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a 𝐴𝐵
Assertion frege66c ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝜒[ 𝐴 / 𝑥 ] 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 frege59c.a 𝐴𝐵
2 1 frege65c ( ∀ 𝑥 ( 𝜒𝜑 ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜒[ 𝐴 / 𝑥 ] 𝜓 ) ) )
3 ax-frege8 ( ( ∀ 𝑥 ( 𝜒𝜑 ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜒[ 𝐴 / 𝑥 ] 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝜒[ 𝐴 / 𝑥 ] 𝜓 ) ) ) )
4 2 3 ax-mp ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜒𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝜒[ 𝐴 / 𝑥 ] 𝜓 ) ) )