Metamath Proof Explorer


Theorem frege65c

Description: A kind of Aristotelian inference. This judgement replaces the mode of inference barbara when the minor premise has a general context. Proposition 65 of Frege1879 p. 53. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a 𝐴𝐵
Assertion frege65c ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 frege59c.a 𝐴𝐵
2 sbcim1 ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )
3 1 frege64c ( ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) )
4 2 3 syl ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) )
5 1 frege61c ( ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) ) )
6 4 5 ax-mp ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) )