Step |
Hyp |
Ref |
Expression |
1 |
|
frege59c.a |
⊢ 𝐴 ∈ 𝐵 |
2 |
|
sbcim1 |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) |
3 |
1
|
frege64c |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
4 |
2 3
|
syl |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
5 |
1
|
frege61c |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜓 → 𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |