Metamath Proof Explorer


Theorem frege64c

Description: Lemma for frege65c . Proposition 64 of Frege1879 p. 53. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a 𝐴𝐵
Assertion frege64c ( ( [ 𝐶 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐶 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 frege59c.a 𝐴𝐵
2 1 frege62c ( [ 𝐴 / 𝑥 ] 𝜓 → ( ∀ 𝑥 ( 𝜓𝜒 ) → [ 𝐴 / 𝑥 ] 𝜒 ) )
3 frege18 ( ( [ 𝐴 / 𝑥 ] 𝜓 → ( ∀ 𝑥 ( 𝜓𝜒 ) → [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐶 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐶 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) ) )
4 2 3 ax-mp ( ( [ 𝐶 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) → ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝐶 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜒 ) ) )