Metamath Proof Explorer


Theorem frege66c

Description: Swap antecedents of frege65c . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a
|- A e. B
Assertion frege66c
|- ( A. x ( ph -> ps ) -> ( A. x ( ch -> ph ) -> ( [. A / x ]. ch -> [. A / x ]. ps ) ) )

Proof

Step Hyp Ref Expression
1 frege59c.a
 |-  A e. B
2 1 frege65c
 |-  ( A. x ( ch -> ph ) -> ( A. x ( ph -> ps ) -> ( [. A / x ]. ch -> [. A / x ]. ps ) ) )
3 ax-frege8
 |-  ( ( A. x ( ch -> ph ) -> ( A. x ( ph -> ps ) -> ( [. A / x ]. ch -> [. A / x ]. ps ) ) ) -> ( A. x ( ph -> ps ) -> ( A. x ( ch -> ph ) -> ( [. A / x ]. ch -> [. A / x ]. ps ) ) ) )
4 2 3 ax-mp
 |-  ( A. x ( ph -> ps ) -> ( A. x ( ch -> ph ) -> ( [. A / x ]. ch -> [. A / x ]. ps ) ) )