Metamath Proof Explorer


Theorem frege66c

Description: Swap antecedents of frege65c . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege59c.a A B
Assertion frege66c x φ ψ x χ φ [˙A / x]˙ χ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 frege59c.a A B
2 1 frege65c x χ φ x φ ψ [˙A / x]˙ χ [˙A / x]˙ ψ
3 ax-frege8 x χ φ x φ ψ [˙A / x]˙ χ [˙A / x]˙ ψ x φ ψ x χ φ [˙A / x]˙ χ [˙A / x]˙ ψ
4 2 3 ax-mp x φ ψ x χ φ [˙A / x]˙ χ [˙A / x]˙ ψ