Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Richard Penner  
				Propositions from _Begriffsschrift_  
				_Begriffsschrift_ Chapter III Following in a sequence  
				frege78  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Commuted form of frege77  .  Proposition 78 of Frege1879  p. 63.
         (Contributed by RP , 1-Jul-2020)   (Revised by RP , 2-Jul-2020) 
         (Proof modification is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						frege78.x  
						  ⊢   X  ∈  U         
					 
					
						 
						 
						frege78.y  
						  ⊢   Y  ∈  V         
					 
					
						 
						 
						frege78.r  
						  ⊢   R  ∈  W         
					 
					
						 
						 
						frege78.a  
						  ⊢   A  ∈  B         
					 
				
					 
					Assertion 
					frege78  
					   ⊢  R  hereditary  A   →    ∀  a     X  R  a   →   a  ∈  A         →   X   t+  ⁡  R     Y   →   Y  ∈  A               
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							frege78.x  
							   ⊢   X  ∈  U         
						 
						
							2  
							
								
							 
							frege78.y  
							   ⊢   Y  ∈  V         
						 
						
							3  
							
								
							 
							frege78.r  
							   ⊢   R  ∈  W         
						 
						
							4  
							
								
							 
							frege78.a  
							   ⊢   A  ∈  B         
						 
						
							5  
							
								1  2  3  4 
							 
							frege77  
							    ⊢  X   t+  ⁡  R     Y   →   R  hereditary  A   →    ∀  a     X  R  a   →   a  ∈  A         →   Y  ∈  A               
						 
						
							6  
							
								
							 
							frege17  
							    ⊢   X   t+  ⁡  R     Y   →   R  hereditary  A   →    ∀  a     X  R  a   →   a  ∈  A         →   Y  ∈  A             →   R  hereditary  A   →    ∀  a     X  R  a   →   a  ∈  A         →   X   t+  ⁡  R     Y   →   Y  ∈  A                  
						 
						
							7  
							
								5  6 
							 
							ax-mp  
							    ⊢  R  hereditary  A   →    ∀  a     X  R  a   →   a  ∈  A         →   X   t+  ⁡  R     Y   →   Y  ∈  A