Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Following in a sequence
frege85
Metamath Proof Explorer
Description: Commuted form of frege77 . Proposition 85 of Frege1879 p. 66.
(Contributed by RP , 1-Jul-2020) (Revised by RP , 5-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege84.x
⊢ X ∈ U
frege84.y
⊢ Y ∈ V
frege84.r
⊢ R ∈ W
frege84.a
⊢ A ∈ B
Assertion
frege85
⊢ X t+ ⁡ R Y → ∀ z X R z → z ∈ A → R hereditary A → Y ∈ A
Proof
Step
Hyp
Ref
Expression
1
frege84.x
⊢ X ∈ U
2
frege84.y
⊢ Y ∈ V
3
frege84.r
⊢ R ∈ W
4
frege84.a
⊢ A ∈ B
5
1 2 3 4
frege77
⊢ X t+ ⁡ R Y → R hereditary A → ∀ z X R z → z ∈ A → Y ∈ A
6
frege12
⊢ X t+ ⁡ R Y → R hereditary A → ∀ z X R z → z ∈ A → Y ∈ A → X t+ ⁡ R Y → ∀ z X R z → z ∈ A → R hereditary A → Y ∈ A
7
5 6
ax-mp
⊢ X t+ ⁡ R Y → ∀ z X R z → z ∈ A → R hereditary A → Y ∈ A