Metamath Proof Explorer


Theorem frege86

Description: Conclusion about element one past Y in the R -sequence. Proposition 86 of Frege1879 p. 66. (Contributed by RP, 1-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege86.x X U
frege86.y Y V
frege86.r R W
frege86.a A B
Assertion frege86 R hereditary A Y A R hereditary A Y R Z Z A X t+ R Y w X R w w A R hereditary A Y R Z Z A

Proof

Step Hyp Ref Expression
1 frege86.x X U
2 frege86.y Y V
3 frege86.r R W
4 frege86.a A B
5 1 2 3 4 frege85 X t+ R Y w X R w w A R hereditary A Y A
6 frege19 X t+ R Y w X R w w A R hereditary A Y A R hereditary A Y A R hereditary A Y R Z Z A X t+ R Y w X R w w A R hereditary A Y R Z Z A
7 5 6 ax-mp R hereditary A Y A R hereditary A Y R Z Z A X t+ R Y w X R w w A R hereditary A Y R Z Z A