Metamath Proof Explorer


Theorem frege86

Description: Conclusion about element one past Y in the R -sequence. Proposition 86 of Frege1879 p. 66. (Contributed by RP, 1-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege86.x 𝑋𝑈
frege86.y 𝑌𝑉
frege86.r 𝑅𝑊
frege86.a 𝐴𝐵
Assertion frege86 ( ( ( 𝑅 hereditary 𝐴𝑌𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑌 𝑅 𝑍𝑍𝐴 ) ) ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑌 𝑅 𝑍𝑍𝐴 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 frege86.x 𝑋𝑈
2 frege86.y 𝑌𝑉
3 frege86.r 𝑅𝑊
4 frege86.a 𝐴𝐵
5 1 2 3 4 frege85 ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝐴 ) → ( 𝑅 hereditary 𝐴𝑌𝐴 ) ) )
6 frege19 ( ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝐴 ) → ( 𝑅 hereditary 𝐴𝑌𝐴 ) ) ) → ( ( ( 𝑅 hereditary 𝐴𝑌𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑌 𝑅 𝑍𝑍𝐴 ) ) ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑌 𝑅 𝑍𝑍𝐴 ) ) ) ) ) )
7 5 6 ax-mp ( ( ( 𝑅 hereditary 𝐴𝑌𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑌 𝑅 𝑍𝑍𝐴 ) ) ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝑌 𝑅 𝑍𝑍𝐴 ) ) ) ) )