Metamath Proof Explorer


Theorem freld

Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis freld.1 φF:AB
Assertion freld φRelF

Proof

Step Hyp Ref Expression
1 freld.1 φF:AB
2 frel F:ABRelF
3 1 2 syl φRelF