Metamath Proof Explorer


Theorem frgrregorufrg

Description: If there is a vertex having degree k for each nonnegative integer k in a friendship graph, then there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Revised by AV, 26-May-2021) (Proof shortened by AV, 12-Jan-2022)

Ref Expression
Hypotheses frgrregorufrg.v V = Vtx G
frgrregorufrg.e E = Edg G
Assertion frgrregorufrg G FriendGraph k 0 a V VtxDeg G a = k G RegUSGraph k v V w V v v w E

Proof

Step Hyp Ref Expression
1 frgrregorufrg.v V = Vtx G
2 frgrregorufrg.e E = Edg G
3 eqid VtxDeg G = VtxDeg G
4 1 2 3 frgrregorufr G FriendGraph a V VtxDeg G a = k v V VtxDeg G v = k v V w V v v w E
5 4 adantr G FriendGraph k 0 a V VtxDeg G a = k v V VtxDeg G v = k v V w V v v w E
6 frgrusgr G FriendGraph G USGraph
7 nn0xnn0 k 0 k 0 *
8 1 3 usgreqdrusgr G USGraph k 0 * v V VtxDeg G v = k G RegUSGraph k
9 8 3expia G USGraph k 0 * v V VtxDeg G v = k G RegUSGraph k
10 6 7 9 syl2an G FriendGraph k 0 v V VtxDeg G v = k G RegUSGraph k
11 10 orim1d G FriendGraph k 0 v V VtxDeg G v = k v V w V v v w E G RegUSGraph k v V w V v v w E
12 5 11 syld G FriendGraph k 0 a V VtxDeg G a = k G RegUSGraph k v V w V v v w E
13 12 ralrimiva G FriendGraph k 0 a V VtxDeg G a = k G RegUSGraph k v V w V v v w E