| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrregorufrg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrregorufrg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | frgrregorufr | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑎  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 )  =  𝑘  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑘  ∈  ℕ0 )  →  ( ∃ 𝑎  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 )  =  𝑘  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 6 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 7 |  | nn0xnn0 | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℕ0* ) | 
						
							| 8 | 1 3 | usgreqdrusgr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑘  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘 )  →  𝐺  RegUSGraph  𝑘 ) | 
						
							| 9 | 8 | 3expia | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑘  ∈  ℕ0* )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘  →  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 10 | 6 7 9 | syl2an | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑘  ∈  ℕ0 )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘  →  𝐺  RegUSGraph  𝑘 ) ) | 
						
							| 11 | 10 | orim1d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑘  ∈  ℕ0 )  →  ( ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 )  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 12 | 5 11 | syld | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑘  ∈  ℕ0 )  →  ( ∃ 𝑎  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑘  ∈  ℕ0 ( ∃ 𝑎  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 )  =  𝑘  →  ( 𝐺  RegUSGraph  𝑘  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) |