Metamath Proof Explorer


Theorem frgrregorufrg

Description: If there is a vertex having degree k for each nonnegative integer k in a friendship graph, then there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Revised by AV, 26-May-2021) (Proof shortened by AV, 12-Jan-2022)

Ref Expression
Hypotheses frgrregorufrg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrregorufrg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrregorufrg ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑎𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 frgrregorufrg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrregorufrg.e 𝐸 = ( Edg ‘ 𝐺 )
3 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
4 1 2 3 frgrregorufr ( 𝐺 ∈ FriendGraph → ( ∃ 𝑎𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) )
5 4 adantr ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ∃ 𝑎𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) )
6 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
7 nn0xnn0 ( 𝑘 ∈ ℕ0𝑘 ∈ ℕ0* )
8 1 3 usgreqdrusgr ( ( 𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ) → 𝐺 RegUSGraph 𝑘 )
9 8 3expia ( ( 𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ) → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘𝐺 RegUSGraph 𝑘 ) )
10 6 7 9 syl2an ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘𝐺 RegUSGraph 𝑘 ) )
11 10 orim1d ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) )
12 5 11 syld ( ( 𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0 ) → ( ∃ 𝑎𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) )
13 12 ralrimiva ( 𝐺 ∈ FriendGraph → ∀ 𝑘 ∈ ℕ0 ( ∃ 𝑎𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑎 ) = 𝑘 → ( 𝐺 RegUSGraph 𝑘 ∨ ∃ 𝑣𝑉𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) )