Metamath Proof Explorer


Theorem frlmiscvec

Description: Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion frlmiscvec R NzRing I Y R freeLMod I 𝑚 R freeLMod I ×

Proof

Step Hyp Ref Expression
1 simpr R NzRing I Y I Y
2 0ex V
3 xpsneng I Y V I × I
4 3 ensymd I Y V I I ×
5 1 2 4 sylancl R NzRing I Y I I ×
6 frlmisfrlm R NzRing I Y I I × R freeLMod I 𝑚 R freeLMod I ×
7 5 6 mpd3an3 R NzRing I Y R freeLMod I 𝑚 R freeLMod I ×