Metamath Proof Explorer


Theorem frlmiscvec

Description: Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion frlmiscvec RNzRingIYRfreeLModI𝑚RfreeLModI×

Proof

Step Hyp Ref Expression
1 simpr RNzRingIYIY
2 0ex V
3 xpsneng IYVI×I
4 3 ensymd IYVII×
5 1 2 4 sylancl RNzRingIYII×
6 frlmisfrlm RNzRingIYII×RfreeLModI𝑚RfreeLModI×
7 5 6 mpd3an3 RNzRingIYRfreeLModI𝑚RfreeLModI×