Metamath Proof Explorer


Theorem fssdm

Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses fssdm.d DdomF
fssdm.f φF:AB
Assertion fssdm φDA

Proof

Step Hyp Ref Expression
1 fssdm.d DdomF
2 fssdm.f φF:AB
3 2 fdmd φdomF=A
4 1 3 sseqtrid φDA