Metamath Proof Explorer


Theorem fssresd

Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fssresd.1 φF:AB
fssresd.2 φCA
Assertion fssresd φFC:CB

Proof

Step Hyp Ref Expression
1 fssresd.1 φF:AB
2 fssresd.2 φCA
3 fssres F:ABCAFC:CB
4 1 2 3 syl2anc φFC:CB