Database REAL AND COMPLEX NUMBERS Elementary limits and convergence Finite and infinite sums fsum0diag  
				
		 
		
			
		 
		Description:   Two ways to express "the sum of A ( j , k )  over the triangular
       region M <_ j  , M <_ k  , j + k <_ N  ".  (Contributed by NM , 31-Dec-2005)   (Proof shortened by Mario Carneiro , 28-Apr-2014) 
       (Revised by Mario Carneiro , 8-Apr-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						fsum0diag.1    ⊢    φ   ∧    j  ∈   0   …  N   ∧   k  ∈   0   …  N  −  j     →   A  ∈   ℂ          
					 
				
					Assertion 
					fsum0diag    ⊢   φ   →   ∑  j  =   0     N  ∑  k  =   0     N  −  j A  =  ∑  k  =   0     N  ∑  j  =   0     N  −  k A         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fsum0diag.1   ⊢    φ   ∧    j  ∈   0   …  N   ∧   k  ∈   0   …  N  −  j     →   A  ∈   ℂ          
						
							2 
								
							 
							fzfid   ⊢   φ   →    0   …  N ∈  Fin         
						
							3 
								
							 
							fzfid   ⊢    φ   ∧   j  ∈   0   …  N    →    0   …  N  −  j ∈  Fin         
						
							4 
								
							 
							fsum0diaglem   ⊢    j  ∈   0   …  N   ∧   k  ∈   0   …  N  −  j    →    k  ∈   0   …  N   ∧   j  ∈   0   …  N  −  k         
						
							5 
								
							 
							fsum0diaglem   ⊢    k  ∈   0   …  N   ∧   j  ∈   0   …  N  −  k    →    j  ∈   0   …  N   ∧   k  ∈   0   …  N  −  j         
						
							6 
								4  5 
							 
							impbii   ⊢    j  ∈   0   …  N   ∧   k  ∈   0   …  N  −  j    ↔    k  ∈   0   …  N   ∧   j  ∈   0   …  N  −  k         
						
							7 
								6 
							 
							a1i   ⊢   φ   →     j  ∈   0   …  N   ∧   k  ∈   0   …  N  −  j    ↔    k  ∈   0   …  N   ∧   j  ∈   0   …  N  −  k          
						
							8 
								2  2  3  7  1 
							 
							fsumcom2   ⊢   φ   →   ∑  j  =   0     N  ∑  k  =   0     N  −  j A  =  ∑  k  =   0     N  ∑  j  =   0     N  −  k A