Step |
Hyp |
Ref |
Expression |
1 |
|
mptfzshft.1 |
|
2 |
|
mptfzshft.2 |
|
3 |
|
mptfzshft.3 |
|
4 |
|
ovex |
|
5 |
|
eqid |
|
6 |
4 5
|
fnmpti |
|
7 |
6
|
a1i |
|
8 |
|
ovex |
|
9 |
|
eqid |
|
10 |
8 9
|
fnmpti |
|
11 |
|
simprr |
|
12 |
11
|
oveq1d |
|
13 |
|
elfzelz |
|
14 |
13
|
ad2antrl |
|
15 |
1
|
adantr |
|
16 |
|
zcn |
|
17 |
|
zcn |
|
18 |
|
npcan |
|
19 |
16 17 18
|
syl2an |
|
20 |
14 15 19
|
syl2anc |
|
21 |
12 20
|
eqtr2d |
|
22 |
|
simprl |
|
23 |
21 22
|
eqeltrrd |
|
24 |
2
|
adantr |
|
25 |
3
|
adantr |
|
26 |
14 15
|
zsubcld |
|
27 |
11 26
|
eqeltrd |
|
28 |
|
fzaddel |
|
29 |
24 25 27 15 28
|
syl22anc |
|
30 |
23 29
|
mpbird |
|
31 |
30 21
|
jca |
|
32 |
|
simprr |
|
33 |
|
simprl |
|
34 |
2
|
adantr |
|
35 |
3
|
adantr |
|
36 |
|
elfzelz |
|
37 |
36
|
ad2antrl |
|
38 |
1
|
adantr |
|
39 |
34 35 37 38 28
|
syl22anc |
|
40 |
33 39
|
mpbid |
|
41 |
32 40
|
eqeltrd |
|
42 |
32
|
oveq1d |
|
43 |
|
zcn |
|
44 |
|
pncan |
|
45 |
43 17 44
|
syl2an |
|
46 |
37 38 45
|
syl2anc |
|
47 |
42 46
|
eqtr2d |
|
48 |
41 47
|
jca |
|
49 |
31 48
|
impbida |
|
50 |
49
|
mptcnv |
|
51 |
50
|
fneq1d |
|
52 |
10 51
|
mpbiri |
|
53 |
|
dff1o4 |
|
54 |
7 52 53
|
sylanbrc |
|