Metamath Proof Explorer


Theorem mptcnv

Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017)

Ref Expression
Hypothesis mptcnv.1 φ x A y = B y C x = D
Assertion mptcnv φ x A B -1 = y C D

Proof

Step Hyp Ref Expression
1 mptcnv.1 φ x A y = B y C x = D
2 1 opabbidv φ y x | x A y = B = y x | y C x = D
3 df-mpt x A B = x y | x A y = B
4 3 cnveqi x A B -1 = x y | x A y = B -1
5 cnvopab x y | x A y = B -1 = y x | x A y = B
6 4 5 eqtri x A B -1 = y x | x A y = B
7 df-mpt y C D = y x | y C x = D
8 2 6 7 3eqtr4g φ x A B -1 = y C D