Metamath Proof Explorer


Theorem fuco112xa

Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. A morphism is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025)

Ref Expression
Hypotheses fuco11.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco11.f φ F C Func D G
fuco11.k φ K D Func E L
fuco11.u φ U = K L F G
fuco111x.x φ X Base C
fuco112x.y φ Y Base C
fuco112xa.a φ A X Hom C Y
Assertion fuco112xa φ X 2 nd O U Y A = F X L F Y X G Y A

Proof

Step Hyp Ref Expression
1 fuco11.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fuco11.f φ F C Func D G
3 fuco11.k φ K D Func E L
4 fuco11.u φ U = K L F G
5 fuco111x.x φ X Base C
6 fuco112x.y φ Y Base C
7 fuco112xa.a φ A X Hom C Y
8 1 2 3 4 5 6 fuco112x φ X 2 nd O U Y = F X L F Y X G Y
9 8 fveq1d φ X 2 nd O U Y A = F X L F Y X G Y A
10 eqid Base C = Base C
11 eqid Hom C = Hom C
12 eqid Hom D = Hom D
13 10 11 12 2 5 6 funcf2 φ X G Y : X Hom C Y F X Hom D F Y
14 13 7 fvco3d φ F X L F Y X G Y A = F X L F Y X G Y A
15 9 14 eqtrd φ X 2 nd O U Y A = F X L F Y X G Y A