Metamath Proof Explorer


Theorem fuco11bALT

Description: Alternate proof of fuco11b . (Contributed by Zhi Wang, 11-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fuco11b.o No typesetting found for |- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O ) with typecode |-
fuco11b.f φ F C Func D
fuco11b.g φ G D Func E
Assertion fuco11bALT φ G O F = G func F

Proof

Step Hyp Ref Expression
1 fuco11b.o Could not format ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O ) : No typesetting found for |- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) = O ) with typecode |-
2 fuco11b.f φ F C Func D
3 fuco11b.g φ G D Func E
4 df-ov G O F = O G F
5 relfunc Rel D Func E
6 1st2nd Rel D Func E G D Func E G = 1 st G 2 nd G
7 5 3 6 sylancr φ G = 1 st G 2 nd G
8 relfunc Rel C Func D
9 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
10 8 2 9 sylancr φ F = 1 st F 2 nd F
11 7 10 oveq12d φ G func F = 1 st G 2 nd G func 1 st F 2 nd F
12 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
13 8 2 12 sylancr φ 1 st F C Func D 2 nd F
14 13 funcrcl2 φ C Cat
15 1st2ndbr Rel D Func E G D Func E 1 st G D Func E 2 nd G
16 5 3 15 sylancr φ 1 st G D Func E 2 nd G
17 16 funcrcl2 φ D Cat
18 16 funcrcl3 φ E Cat
19 eqidd Could not format ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) with typecode |-
20 14 17 18 19 fucoelvv Could not format ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) with typecode |-
21 1st2nd2 Could not format ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
22 20 21 syl Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
23 7 10 opeq12d φ G F = 1 st G 2 nd G 1 st F 2 nd F
24 22 13 16 23 fuco11 Could not format ( ph -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. G , F >. ) = ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. G , F >. ) = ( <. ( 1st ` G ) , ( 2nd ` G ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) with typecode |-
25 1 fveq1d Could not format ( ph -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. G , F >. ) = ( O ` <. G , F >. ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. C , D >. o.F E ) ) ` <. G , F >. ) = ( O ` <. G , F >. ) ) with typecode |-
26 11 24 25 3eqtr2rd φ O G F = G func F
27 4 26 eqtrid φ G O F = G func F