Metamath Proof Explorer


Theorem fucof1

Description: The object part of the functor composition bifunctor maps ( ( D Func E ) X. ( C Func D ) ) into ( C Func E ) . (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fucofval.c φ C T
fucofval.d φ D U
fucofval.e φ E V
fuco1.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fuco1.w φ W = D Func E × C Func D
Assertion fucof1 φ O : W C Func E

Proof

Step Hyp Ref Expression
1 fucofval.c φ C T
2 fucofval.d φ D U
3 fucofval.e φ E V
4 fuco1.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
5 fuco1.w φ W = D Func E × C Func D
6 rescofuf func D Func E × C Func D : D Func E × C Func D C Func E
7 1 2 3 4 5 fuco1 φ O = func W
8 5 reseq2d φ func W = func D Func E × C Func D
9 7 8 eqtrd φ O = func D Func E × C Func D
10 9 5 feq12d φ O : W C Func E func D Func E × C Func D : D Func E × C Func D C Func E
11 6 10 mpbiri φ O : W C Func E