Metamath Proof Explorer


Theorem fucterm

Description: The category of functors to a terminal category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses funcsn.q Q = C FuncCat D
fucterm.c φ C Cat
fucterm.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
Assertion fucterm Could not format assertion : No typesetting found for |- ( ph -> Q e. TermCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 funcsn.q Q = C FuncCat D
2 fucterm.c φ C Cat
3 fucterm.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
4 opex Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y V
5 4 a1i φ Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y V
6 eqid Base C = Base C
7 eqid Base D = Base D
8 eqid Hom C = Hom C
9 eqid Hom D = Hom D
10 eqid Base C × Base D = Base C × Base D
11 eqid x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y = x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y
12 2 3 6 7 8 9 10 11 functermc2 φ C Func D = Base C × Base D x Base C , y Base C x Hom C y × Base C × Base D x Hom D Base C × Base D y
13 3 termcthind φ D ThinCat
14 1 5 12 13 funcsn Could not format ( ph -> Q e. TermCat ) : No typesetting found for |- ( ph -> Q e. TermCat ) with typecode |-