Metamath Proof Explorer


Theorem funcsn

Description: The category of one functor to a thin category is terminal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses funcsn.q Q = C FuncCat D
funcsn.f φ F V
funcsn.c φ C Func D = F
funcsn.d φ D ThinCat
Assertion funcsn Could not format assertion : No typesetting found for |- ( ph -> Q e. TermCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 funcsn.q Q = C FuncCat D
2 funcsn.f φ F V
3 funcsn.c φ C Func D = F
4 funcsn.d φ D ThinCat
5 1 fucbas C Func D = Base Q
6 5 a1i φ C Func D = Base Q
7 eqid C Nat D = C Nat D
8 1 7 fuchom C Nat D = Hom Q
9 8 a1i φ C Nat D = Hom Q
10 simprl φ a f C Nat D g b f C Nat D g a f C Nat D g
11 7 10 nat1st2nd φ a f C Nat D g b f C Nat D g a 1 st f 2 nd f C Nat D 1 st g 2 nd g
12 eqid Base C = Base C
13 7 11 12 natfn φ a f C Nat D g b f C Nat D g a Fn Base C
14 simprr φ a f C Nat D g b f C Nat D g b f C Nat D g
15 7 14 nat1st2nd φ a f C Nat D g b f C Nat D g b 1 st f 2 nd f C Nat D 1 st g 2 nd g
16 7 15 12 natfn φ a f C Nat D g b f C Nat D g b Fn Base C
17 eqid Base D = Base D
18 7 11 natrcl2 φ a f C Nat D g b f C Nat D g 1 st f C Func D 2 nd f
19 12 17 18 funcf1 φ a f C Nat D g b f C Nat D g 1 st f : Base C Base D
20 19 ffvelcdmda φ a f C Nat D g b f C Nat D g x Base C 1 st f x Base D
21 7 11 natrcl3 φ a f C Nat D g b f C Nat D g 1 st g C Func D 2 nd g
22 12 17 21 funcf1 φ a f C Nat D g b f C Nat D g 1 st g : Base C Base D
23 22 ffvelcdmda φ a f C Nat D g b f C Nat D g x Base C 1 st g x Base D
24 11 adantr φ a f C Nat D g b f C Nat D g x Base C a 1 st f 2 nd f C Nat D 1 st g 2 nd g
25 eqid Hom D = Hom D
26 simpr φ a f C Nat D g b f C Nat D g x Base C x Base C
27 7 24 12 25 26 natcl φ a f C Nat D g b f C Nat D g x Base C a x 1 st f x Hom D 1 st g x
28 15 adantr φ a f C Nat D g b f C Nat D g x Base C b 1 st f 2 nd f C Nat D 1 st g 2 nd g
29 7 28 12 25 26 natcl φ a f C Nat D g b f C Nat D g x Base C b x 1 st f x Hom D 1 st g x
30 4 ad2antrr φ a f C Nat D g b f C Nat D g x Base C D ThinCat
31 20 23 27 29 17 25 30 thincmo2 φ a f C Nat D g b f C Nat D g x Base C a x = b x
32 13 16 31 eqfnfvd φ a f C Nat D g b f C Nat D g a = b
33 32 ralrimivva φ a f C Nat D g b f C Nat D g a = b
34 moel * a a f C Nat D g a f C Nat D g b f C Nat D g a = b
35 33 34 sylibr φ * a a f C Nat D g
36 35 adantr φ f C Func D g C Func D * a a f C Nat D g
37 snidg F V F F
38 2 37 syl φ F F
39 38 3 eleqtrrd φ F C Func D
40 39 func1st2nd φ 1 st F C Func D 2 nd F
41 40 funcrcl2 φ C Cat
42 4 thinccd φ D Cat
43 1 41 42 fuccat φ Q Cat
44 6 9 36 43 isthincd φ Q ThinCat
45 sneq f = F f = F
46 45 eqeq2d f = F C Func D = f C Func D = F
47 2 3 46 spcedv φ f C Func D = f
48 5 istermc Could not format ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) : No typesetting found for |- ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) with typecode |-
49 44 47 48 sylanbrc Could not format ( ph -> Q e. TermCat ) : No typesetting found for |- ( ph -> Q e. TermCat ) with typecode |-