| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsn.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
funcsn.f |
|- ( ph -> F e. V ) |
| 3 |
|
funcsn.c |
|- ( ph -> ( C Func D ) = { F } ) |
| 4 |
|
funcsn.d |
|- ( ph -> D e. ThinCat ) |
| 5 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 6 |
5
|
a1i |
|- ( ph -> ( C Func D ) = ( Base ` Q ) ) |
| 7 |
|
eqid |
|- ( C Nat D ) = ( C Nat D ) |
| 8 |
1 7
|
fuchom |
|- ( C Nat D ) = ( Hom ` Q ) |
| 9 |
8
|
a1i |
|- ( ph -> ( C Nat D ) = ( Hom ` Q ) ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( f ( C Nat D ) g ) ) |
| 11 |
7 10
|
nat1st2nd |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 13 |
7 11 12
|
natfn |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a Fn ( Base ` C ) ) |
| 14 |
|
simprr |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( f ( C Nat D ) g ) ) |
| 15 |
7 14
|
nat1st2nd |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 16 |
7 15 12
|
natfn |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> b Fn ( Base ` C ) ) |
| 17 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 18 |
7 11
|
natrcl2 |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` f ) ( C Func D ) ( 2nd ` f ) ) |
| 19 |
12 17 18
|
funcf1 |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` f ) : ( Base ` C ) --> ( Base ` D ) ) |
| 20 |
19
|
ffvelcdmda |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` D ) ) |
| 21 |
7 11
|
natrcl3 |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` g ) ( C Func D ) ( 2nd ` g ) ) |
| 22 |
12 17 21
|
funcf1 |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> ( 1st ` g ) : ( Base ` C ) --> ( Base ` D ) ) |
| 23 |
22
|
ffvelcdmda |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( ( 1st ` g ) ` x ) e. ( Base ` D ) ) |
| 24 |
11
|
adantr |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 25 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 26 |
|
simpr |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 27 |
7 24 12 25 26
|
natcl |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( a ` x ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` D ) ( ( 1st ` g ) ` x ) ) ) |
| 28 |
15
|
adantr |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> b e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( C Nat D ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
| 29 |
7 28 12 25 26
|
natcl |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( b ` x ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` D ) ( ( 1st ` g ) ` x ) ) ) |
| 30 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> D e. ThinCat ) |
| 31 |
20 23 27 29 17 25 30
|
thincmo2 |
|- ( ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) /\ x e. ( Base ` C ) ) -> ( a ` x ) = ( b ` x ) ) |
| 32 |
13 16 31
|
eqfnfvd |
|- ( ( ph /\ ( a e. ( f ( C Nat D ) g ) /\ b e. ( f ( C Nat D ) g ) ) ) -> a = b ) |
| 33 |
32
|
ralrimivva |
|- ( ph -> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
| 34 |
|
moel |
|- ( E* a a e. ( f ( C Nat D ) g ) <-> A. a e. ( f ( C Nat D ) g ) A. b e. ( f ( C Nat D ) g ) a = b ) |
| 35 |
33 34
|
sylibr |
|- ( ph -> E* a a e. ( f ( C Nat D ) g ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ ( f e. ( C Func D ) /\ g e. ( C Func D ) ) ) -> E* a a e. ( f ( C Nat D ) g ) ) |
| 37 |
|
snidg |
|- ( F e. V -> F e. { F } ) |
| 38 |
2 37
|
syl |
|- ( ph -> F e. { F } ) |
| 39 |
38 3
|
eleqtrrd |
|- ( ph -> F e. ( C Func D ) ) |
| 40 |
39
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 41 |
40
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 42 |
4
|
thinccd |
|- ( ph -> D e. Cat ) |
| 43 |
1 41 42
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 44 |
6 9 36 43
|
isthincd |
|- ( ph -> Q e. ThinCat ) |
| 45 |
|
sneq |
|- ( f = F -> { f } = { F } ) |
| 46 |
45
|
eqeq2d |
|- ( f = F -> ( ( C Func D ) = { f } <-> ( C Func D ) = { F } ) ) |
| 47 |
2 3 46
|
spcedv |
|- ( ph -> E. f ( C Func D ) = { f } ) |
| 48 |
5
|
istermc |
|- ( Q e. TermCat <-> ( Q e. ThinCat /\ E. f ( C Func D ) = { f } ) ) |
| 49 |
44 47 48
|
sylanbrc |
|- ( ph -> Q e. TermCat ) |