Metamath Proof Explorer


Theorem funadj

Description: Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion funadj Funadjh

Proof

Step Hyp Ref Expression
1 funopab Funtu|t:u:xyxihty=uxihyt*ut:u:xyxihty=uxihy
2 adjmo *uu:xyxihty=uxihy
3 3simpc t:u:xyxihty=uxihyu:xyxihty=uxihy
4 3 moimi *uu:xyxihty=uxihy*ut:u:xyxihty=uxihy
5 2 4 ax-mp *ut:u:xyxihty=uxihy
6 1 5 mpgbir Funtu|t:u:xyxihty=uxihy
7 dfadj2 adjh=tu|t:u:xyxihty=uxihy
8 7 funeqi FunadjhFuntu|t:u:xyxihty=uxihy
9 6 8 mpbir Funadjh