Metamath Proof Explorer


Theorem funbrafv2b

Description: Function value in terms of a binary relation, analogous to funbrfv2b . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funbrafv2b FunFAFBAdomFF'''A=B

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 releldm RelFAFBAdomF
3 2 ex RelFAFBAdomF
4 1 3 syl FunFAFBAdomF
5 4 pm4.71rd FunFAFBAdomFAFB
6 funbrafvb FunFAdomFF'''A=BAFB
7 6 pm5.32da FunFAdomFF'''A=BAdomFAFB
8 5 7 bitr4d FunFAFBAdomFF'''A=B