Metamath Proof Explorer


Theorem funbrafv2b

Description: Function value in terms of a binary relation, analogous to funbrfv2b . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funbrafv2b
|- ( Fun F -> ( A F B <-> ( A e. dom F /\ ( F ''' A ) = B ) ) )

Proof

Step Hyp Ref Expression
1 funrel
 |-  ( Fun F -> Rel F )
2 releldm
 |-  ( ( Rel F /\ A F B ) -> A e. dom F )
3 2 ex
 |-  ( Rel F -> ( A F B -> A e. dom F ) )
4 1 3 syl
 |-  ( Fun F -> ( A F B -> A e. dom F ) )
5 4 pm4.71rd
 |-  ( Fun F -> ( A F B <-> ( A e. dom F /\ A F B ) ) )
6 funbrafvb
 |-  ( ( Fun F /\ A e. dom F ) -> ( ( F ''' A ) = B <-> A F B ) )
7 6 pm5.32da
 |-  ( Fun F -> ( ( A e. dom F /\ ( F ''' A ) = B ) <-> ( A e. dom F /\ A F B ) ) )
8 5 7 bitr4d
 |-  ( Fun F -> ( A F B <-> ( A e. dom F /\ ( F ''' A ) = B ) ) )