Metamath Proof Explorer


Theorem func0g

Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses func0g.a A = Base C
func0g.b B = Base D
func0g.d φ B =
func0g.f φ F C Func D G
Assertion func0g φ A =

Proof

Step Hyp Ref Expression
1 func0g.a A = Base C
2 func0g.b B = Base D
3 func0g.d φ B =
4 func0g.f φ F C Func D G
5 1 2 4 funcf1 φ F : A B
6 5 f002 φ B = A =
7 3 6 mpd φ A =