Metamath Proof Explorer


Theorem func0g2

Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses func0g.a A = Base C
func0g.b B = Base D
func0g.d φ B =
func0g2.f φ F C Func D
Assertion func0g2 φ A =

Proof

Step Hyp Ref Expression
1 func0g.a A = Base C
2 func0g.b B = Base D
3 func0g.d φ B =
4 func0g2.f φ F C Func D
5 4 func1st2nd φ 1 st F C Func D 2 nd F
6 1 2 3 5 func0g φ A =