Metamath Proof Explorer


Theorem func2nd

Description: Extract the second member of a functor. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypothesis func1st.1 φ F C Func D G
Assertion func2nd φ 2 nd F G = G

Proof

Step Hyp Ref Expression
1 func1st.1 φ F C Func D G
2 relfunc Rel C Func D
3 2 brrelex12i F C Func D G F V G V
4 op2ndg F V G V 2 nd F G = G
5 1 3 4 3syl φ 2 nd F G = G