Metamath Proof Explorer


Theorem funcnvres

Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998)

Ref Expression
Assertion funcnvres FunF-1FA-1=F-1FA

Proof

Step Hyp Ref Expression
1 df-ima FA=ranFA
2 df-rn ranFA=domFA-1
3 1 2 eqtri FA=domFA-1
4 3 reseq2i F-1FA=F-1domFA-1
5 resss FAF
6 cnvss FAFFA-1F-1
7 5 6 ax-mp FA-1F-1
8 funssres FunF-1FA-1F-1F-1domFA-1=FA-1
9 7 8 mpan2 FunF-1F-1domFA-1=FA-1
10 4 9 eqtr2id FunF-1FA-1=F-1FA